Bun SQLite Key Value

A super fast key-value store with SQLite that uses bun:sqlite and v8 as a fast JSON replacement.

license npm version npm downloads bun:sqlite

Bun’s lightning-fast SQLite implementation makes Bun-SQLite-Key-Value perfect for a fast and reliable storage and cache solution with TTL support. You need Bun to be able to use this package.

The ideas for the implementation come from bun-sqlite-cache and bun-kv. Thank you very much!

Table of Contents

Installation

bun add bun-sqlite-key-value

Usage

Using this key value store is dead simple: create a new BunSqliteKeyValue instance and you’re set. And if you want to save the data permanently, enter the path to the database.

import { BunSqliteKeyValue } from "bun-sqlite-key-value"

const store = new BunSqliteKeyValue()

// Use regular methods to write and read values.
store.set("myKey", [1, 2, 3, 4])
store.get("myKey") // --> [ 1, 2, 3, 4 ]

// Or use the `data` object for simple write and read access.
store.data.myKey = "Hello world!"
store.data.myKey // --> "Hello World"

Open Database

const store = new BunSqliteKeyValue(filename?, options?)

Opens and creates the SQLite database either in memory or on the file system.

filename (optional)

The full path of the SQLite database to open. Pass an empty string ("") or ":memory:" or undefined for an in-memory database.

options (optional)

readonly?: boolean: Open the database as read-only (default: false).

create?: boolean: Allow creating a new database (default: true). If the database folder does not exist, it will be created.

readwrite?: boolean: Open the database as read-write (default: true).

ttlMs?: boolean: Default time span in milliseconds before an entry written to the DB becomes invalid and is marked for deletion.

maxExpiringItemsInDb?: number: Default value that specifies the maximum number of expiring items that may be in the database. Is used by the deleteOldExpiringItems() method as default value.

Example

import { BunSqliteKeyValue } from "bun-sqlite-key-value"

// In-memory
const store1 = new BunSqliteKeyValue()
// In-memory with 30 seconds default expiration timeout
const store2 = new BunSqliteKeyValue(":memory:", {ttlMs: 30000})
// Store items in file system
const store3 = new BunSqliteKeyValue("./store3.sqlite")

Close Database

close()

Closes database and removes .sqlite-shm and .sqlite-wal files.

Write Value

set(key: string | undefined, value: any, ttlMs?: number): Key

data.<key> = <value>
data[<key>] = <value>

Writes a value into the database and returns the key.

key

The key can be a string or undefined. If the key is undefined, a UUID is used instead.

value

The value can be any object that can be serialized with v8. This means that not only simple data types (string, number) are possible, but also more complex types such as sets or maps. You can find a list of the supported data types here.

ttlMs (optional)

“Time to live” in milliseconds. After this time, the item becomes invalid and is deleted from the database the next time it is accessed or when the application is started. Set the value to 0 if you want to explicitly deactivate the process.

Example

import { BunSqliteKeyValue } from "bun-sqlite-key-value"

const store = new BunSqliteKeyValue()

// Stays in database
store.set("myKey1", "my-value")

store.data.myKey2 = "my-value"
store.data["myKey3"] = "my-value"

// Becomes invalid after 30 seconds
store.set("myKey6", "item-with-ttl", 30000)

Read Value

get(key: string): any

data.<key>: any
data[<key>]: any

Reads a value from the database.

key

The key must be a string.

Example

import { BunSqliteKeyValue } from "bun-sqlite-key-value"

const store = new BunSqliteKeyValue()

store.set("myKey", "my-value")

store.get("myKey") // --> "my-value"

store.data.myKey // --> "my-value"
store.data["myKey"] // --> "my-value"

Read and Write Value (in one step)

getSet(key: string, value: any, ttlMs?: number)

Atomically sets key to value and returns the old value stored at key. Inspired by: https://docs.keydb.dev/docs/commands/#getset

key

The key must be a string.

value

The value can be any object that can be serialized with v8. This means that not only simple data types (string, number) are possible, but also more complex types such as sets or maps. You can find a list of the supported data types here.

ttlMs (optional)

“Time to live” in milliseconds. After this time, the item becomes invalid and is deleted from the database the next time it is accessed or when the application is started. Set the value to 0 if you want to explicitly deactivate the process.

Example

import { BunSqliteKeyValue } from "bun-sqlite-key-value"

const store = new BunSqliteKeyValue()

store.set("key-1", "string-value-1")
store.getSet("key-1", "string-value-2")) // --> "string-value-1"
store.get("key-1") // --> "string-value-2"

Read Multiple Values

getValues(startsWithOrKeys?: string | string[]): any[]

<store>.values

Reads the data from the database and returns an array with the values.

startsWithOrKeys

undefined: Returns an array with all values.

string: Returns an array with all values whose keys begin with the passed string. If you plan the names of the keys well, more complex data can be stored. It is advisable to divide keys into ranges using separators. For example "language:de", "language:en", "language:it". A search for "language:" would return all languages.

string[]: Array with keys. The returned array is exactly the same size as the passed array. Entries that are not found are returned as undefined. Only exact matches with the keys are returned.

Example

import { BunSqliteKeyValue } from "bun-sqlite-key-value"

const store = new BunSqliteKeyValue()

store.set("language:de", "German")
store.set("language:en", "English")
store.set("language:it", "Italian")

store.getValues() // --> [ "German", "English", "Italian" ]
store.getValues("language:") // --> [ "German", "English", "Italian" ]

store.values // --> [ "German", "English", "Italian" ]

Write Multiple Items

setItems(items: {key: string, value: T, ttlMs?: number}[])

Adds a large number of items to the database and takes only a small fraction of the time that set() would take individually.

Example

import { BunSqliteKeyValue } from "bun-sqlite-key-value"

const store = new BunSqliteKeyValue()

// Add many records
store.setItems([
    {key: "a:1", value: "test-value-1"},
    {key: "a:2", value: "test-value-2"},
])

Read Item

Reads the key and the value from the database.

getItem(key: string): {key: string, value: any}

key

The key must be a string.

Example

import { BunSqliteKeyValue } from "bun-sqlite-key-value"

const store = new BunSqliteKeyValue()
store.set("my-key", "my-value")

const item = store.getItem("my-key")
console.log(item)  // --> {key: "my-key", value: "my-value"}

Read Multiple Items

getItems(startsWithOrKeys?: string | string[]): {key: string, value: any}[]

<store>.items

Reads the data from the database and returns items in an array as key-value pairs.

startsWithOrKeys

undefined: Returns all items (key, value) in an array.

string: Returns all items (key, value) in an array whose keys begin with the passed string. If you plan the names of the keys well, more complex data can be stored. It is advisable to divide keys into ranges using separators. For example "language:de", "language:en", "language:it". A search for "language:" would return all languages.

string[]: Array with keys. The returned array is exactly the same size as the passed array. Entries that are not found are returned as undefined. Only exact matches with the keys are returned.

Example

import { BunSqliteKeyValue } from "bun-sqlite-key-value"

const store = new BunSqliteKeyValue()

store.set("language:de", "German")
store.set("language:en", "English")
store.set("language:it", "Italian")

store.getItems("language:") // --> [
//     {key: "language:de", value: "German"},
//     {key: "language:en", value: "English"},
//     {key: "language:it", value: "Italian"}
// ]

store.items // --> [
//     {key: "language:de", value: "German"},
//     {key: "language:en", value: "English"},
//     {key: "language:it", value: "Italian"}
// ]

Read and Write Binary Files (Images)

SQLite has no problem with images and other binaries. The maximum size of a binary file is 2 GB.

Example (async)

import { BunSqliteKeyValue } from "bun-sqlite-key-value"

const store = new BunSqliteKeyValue()

// Read file from filesystem
const sourceFile = Bun.file("<Source File Path>")

// Write ArrayBuffer into database (async !!!)
store.set("my-image", await sourceFile.arrayBuffer())

// Read ArrayBuffer from database
const targetArrayBuffer = store.get("my-image")

// Write target file to filesystem (async !!!)
await Bun.write(Bun.file("<Target File Path>"), targetArrayBuffer)

Example (sync)

import { BunSqliteKeyValue } from "bun-sqlite-key-value"
import { readFileSync, writeFileSync } from "node:fs"

const store = new BunSqliteKeyValue()

// Read content from filesystem
const sourceContent = readFileSync("<Source File Path>")

// Write Buffer into database
store.set("my-image", sourceContent)

// Read Buffer from database
const targetBuffer = store.get("my-image")

// Write target file to filesystem
writeFileSync("<Target File Path>", targetBuffer)

Has (key)

has(key: string): boolean

exists(key: string) // --> alias for has()

<key> in <store>.data

Checks if key exists. Returns false if the item is expired.

Example

import { BunSqliteKeyValue } from "bun-sqlite-key-value"

const store = new BunSqliteKeyValue()

store.has("my-key") // --> false
console.log("my-key" in store.data) // --> false 

Read Multiple Keys

getKeys(startsWithOrKeys?: string | string[]): string[]

<store>.keys // --> all keys

Reads the keys from the database and returns an array.

startsWithOrKeys

undefined: Returns all keys in an array.

string: Returns an array with the keys that begin with the passed string. If you plan the names of the keys well, more complex data can be stored. It is advisable to divide keys into ranges using separators. For example "language:de", "language:en", "language:it". A search for "language:" would return all languages.

string[]: Array with keys. Only exact matches with the keys are returned.

Example

import { BunSqliteKeyValue } from "bun-sqlite-key-value"

const store = new BunSqliteKeyValue()

store.set("language:de", "German")
store.set("language:en", "English")
store.set("language:es", "Esperanto")

store.getKeys() // --> ["language:de", "language:en", "language:es"]

store.keys // --> ["language:de", "language:en", "language:es"]

store.getKeys("language:e") // --> ["language:en", "language:es"]

store.getKeys(["language:de", "language:fr"]) // --> ["language:de"]

Rename Key

rename(oldKey: string, newKey: string): boolean

Renames oldKey to newKey. It returns false when oldKey does not exist. If newKey already exists it is deleted first. Inspired by: https://docs.keydb.dev/docs/commands/#rename

Delete Items

delete(keyOrKeys?: string | string[])

clear() // --> delete all items

delete <store>.data.<key>

Deletes all items if no parameter was passed.

key: string: Deletes the entry whose key was passed as a string.

keys: string[]: Deletes the entries whose keys were passed in an array.

Example

import { BunSqliteKeyValue } from "bun-sqlite-key-value"

const store = new BunSqliteKeyValue()

// Delete all items
store.delete()
store.clear()

// Delete one item
store.delete("myKey")
delete store.data.myKey

// Delete multiple items
store.delete(["key1", "key2"])

Delete Expired Items

deleteExpired()

Deletes all expired items. These are entries whose TTL (Time to live) has expired. These entries are not deleted continuously, but only when they are accessed directly or when the database is opened. If you want to delete the expired entries in between, you can do this with deleteExpired().

Delete Old Expiring Items

deleteOldExpiringItems(maxExpiringItemsInDb?: number)

If there are more expiring items in the database than maxExpiringItemsInDb, the oldest items are deleted until there are only maxExpiringItemsInDb items with an expiration date in the database.

Example

import { BunSqliteKeyValue } from "bun-sqlite-key-value"

const store = new BunSqliteKeyValue()

store.set("static:1", "my-value")
store.set("static:2", "my-value")
store.set("dynamic:1", "my-value", 4000)
store.set("dynamic:2", "my-value", 5000)
store.set("dynamic:3", "my-value", 6000)

store.deleteOldExpiringItems(2)
console.log(store.getKeys("dynamic:"))
// --> [ "dynamic:2", "dynamic:3" ]

Count All Items

getCount(): number

count() // --> alias for getCount()
length // --> getter method for `getCount()`

Returns the number of all items, including those that have already expired. The fact that possibly expired entries are also counted is for reasons of speed. Use getCountValid() if you want to get the number of items that have not yet expired. If you do not use ttlMs (time to live), getCount() is faster than getCountValid().

Example

import { BunSqliteKeyValue } from "bun-sqlite-key-value"

const store = new BunSqliteKeyValue()

store.set("my-key1", "my-value1")
store.set("my-key2", "my-value2")

store.getCount() // --> 2
store.length // --> 2

Count Valid Items

getCountValid(deleteExpired?: boolean): number

Returns the number of valid (non-expired) items. Can also delete the expired items.

deleteExpired

If true is passed, the expired entries are deleted first before the entries are counted.

If the parameter is not specified or false is passed, then only the entries that have no expiration date or whose expiration date is in the future are counted.

Example

import { BunSqliteKeyValue } from "bun-sqlite-key-value"

const store = new BunSqliteKeyValue()

store.set("my-key1", "my-value1")
store.set("my-key2", "my-value2", 100)

store.getCountValid() // --> 2

await Bun.sleep(500)
store.getCountValid() // --> 1

Cache Values with TTL

You can specify a caching period when you open the database. This period in milliseconds is then added with each write. If you read the value within this period, the value is returned. If the value is read after this period, undefined is returned.

Example

import { BunSqliteKeyValue } from "bun-sqlite-key-value"

const store = new BunSqliteKeyValue(":memory:", {ttlMs: 1000})

const KEY = "cache-key"
store.set(KEY, 12345)

await Bun.sleep(500)
console.log(store.get(KEY)) // --> 12345

await Bun.sleep(1000)
console.log(store.get(KEY)) // --> undefined

Set TTL

setTtl(key: string, ttlMs?: number): boolean

Renews or deletes the TTL of the database row. Returns true if the key exists.

key

The key must be a string.

ttlMs (optional)

“Time to live” in milliseconds. After this time, the item becomes invalid and is deleted from the database the next time it is accessed or when the application is started. Uses the global ttlMs as default value. Set the value to 0 if you want to delete the TTL.

Example

import { BunSqliteKeyValue } from "bun-sqlite-key-value"

const store = new BunSqliteKeyValue()

store.set("my-key", "my-value", 10000)

// Update TTL
store.setTtl("my-key", 10000) // --> true

// Delete TTL
store.setTtl("my-key", 0) // --> true

Get TTL

getTtl(key: string): number | undefined

Returns how long the data record is still valid (in milliseconds). Returns undefined if the key does not exist or no expiration date has been set.

Inspired by: https://docs.keydb.dev/docs/commands/#ttl

key

The key must be a string.

Example

import { BunSqliteKeyValue } from "bun-sqlite-key-value"

const store = new BunSqliteKeyValue()

store.set("my-key", "my-value", 20000)
await Bun.sleep(1)
store.getTtl("my-key") // --> 19999

Random Value

getRandomValue(): any // --> random value

randomValue() // --> alias for getRandomValue()

Returns a random value or undefined if no valid item was found. Inspired by: https://docs.keydb.dev/docs/commands/#randomkey

Random Item

getRandomItem() // --> random item

randomItem() // --> alias for getRandomItem()

Returns a random item or undefined if no valid item was found. Inspired by: https://docs.keydb.dev/docs/commands/#randomkey

Random Key

getRandomKey() // --> random key

randomKey() // --> alias for getRandomKey()

Returns a random key or undefined if no valid item was found. Inspired by: https://docs.keydb.dev/docs/commands/#randomkey

Increment

incr(key: string, incrBy: number = 1, ttlMs?: number): number

Increments the saved number by incrBy (default = 1), saves the new number and returns it. If the key does not yet exist in the database, the value is set to 0 before being incremented by incrBy. If a string is stored in the database that can be converted into a number, this is converted first. If the stored value cannot be converted into a number, NaN is returned.

key

The key must be a string.

incrBy

The stored number is increased by this value.

ttlMs (optional)

“Time to live” in milliseconds. After this time, the item becomes invalid and is deleted from the database the next time it is accessed or when the application is started. Set the value to 0 if you want to explicitly deactivate the process.

Example

import { BunSqliteKeyValue } from "bun-sqlite-key-value"

const store = new BunSqliteKeyValue()

store.incr("my-key") // --> 1
store.incr("my-key") // --> 2

Decrement

decr(key: string, decrBy: number = 1, ttlMs?: number): number

Decrements the saved number by decrBy (default = 1), saves the new number and returns it. If the key does not yet exist in the database, the value is set to 0 before being decremented by decrBy. If a string is stored in the database that can be converted into a number, this is converted first. If the stored value cannot be converted into a number, NaN is returned.

key

The key must be a string.

incrBy

The stored number is decreased by this value.

ttlMs (optional)

“Time to live” in milliseconds. After this time, the item becomes invalid and is deleted from the database the next time it is accessed or when the application is started. Set the value to 0 if you want to explicitly deactivate the process.

Example

import { BunSqliteKeyValue } from "bun-sqlite-key-value"

const store = new BunSqliteKeyValue()

store.set("my-key", 10)
store.decr("my-key") // --> 9
store.decr("my-key") // --> 8

Append

append(key: string, value: string, ttlMs?: number): number

If key already exists, this command appends the value at the end of the string. If key does not exist it is created and set as an empty string, so append() will be similar to set() in this special case. Inspired by: https://docs.keydb.dev/docs/commands/#append

Returns the length of the string after the append operation.

key

The key must be a string.

value

The string that is appended to the existing string.

ttlMs (optional)

“Time to live” in milliseconds. After this time, the item becomes invalid and is deleted from the database the next time it is accessed or when the application is started. Set the value to 0 if you want to explicitly deactivate the process.

Example

import { BunSqliteKeyValue } from "bun-sqlite-key-value"

const store = new BunSqliteKeyValue()

store.append("my-key", "Hello!") // --> 6
store.append("my-key", "World!") // --> 12 
store.get("my-key") // --> "Hello!World!"

Hash (Map Object) - Write Value

hSet(key: string, field: string, value: any, ttlMs?: number)

First the JavaScript Map Object is read from the database. If the data record does not yet exist, a new “Map Object” is created. Then the entry marked with field is added to the “Map Object” or overwritten. Finally, the modified “Map Object” is written back to the database.

Inspired by: https://docs.keydb.dev/docs/commands/#hset

Do not use the hash functions with several very large amounts (megabytes) of data or blobs. This is because the entire data record with all fields is always read and written. It is better to use setValues() and getValues() for large amounts of data.

key

The key must be a string.

field

The field name must be a string.

value

The value can be any object that can be serialized with v8. This means that not only simple data types (string, number) are possible, but also more complex types such as sets or maps. You can find a list of the supported data types here.

ttlMs (optional)

“Time to live” in milliseconds (for the database line, marked with key). After this time, the item becomes invalid and is deleted from the database the next time it is accessed or when the application is started. Set the value to 0 if you want to explicitly deactivate the process.

Example

import { BunSqliteKeyValue } from "bun-sqlite-key-value"

const store = new BunSqliteKeyValue()

store.hSet("key-1", "field-1", "value-1")
store.hSet("key-1", "field-2", "value-2")

store.get("key-1") // --> Map(2) {
  "name-1": "value-1",
  "name-2": "value-2",
}

Hash (Map Object) - Read Value

hGet(key: string, field: string)

First the JavaScript Map Object is read from the database. If the data record (marked with key) does not exist, undefined is returned. If the field (marked with field) does not exist in the “Map Object”, undefined is returned.

Do not use the hash functions with several very large amounts (megabytes) of data or blobs. This is because the entire data record with all fields is always read and written. It is better to use setValues() and getValues() for large amounts of data.

Inspired by: https://docs.keydb.dev/docs/commands/#hget

key

The key must be a string.

field

The field name must be a string.

Example

import { BunSqliteKeyValue } from "bun-sqlite-key-value"

const store = new BunSqliteKeyValue()

store.hSet("key-1", "field-1", "value-1")

store.hGet("key-1", "field-1") // --> "value-1"
store.hGet("key-1", "field-2") // --> undefined

Hash (Map Object) - Write Multiple Values

hmSet(key: string, fields: {[field: string]: T}, ttlMs?: number)

Like hSet(), with the difference that several fields are written to the database in one go.

Do not use the hash functions with several very large amounts (megabytes) of data or blobs. This is because the entire data record with all fields is always read and written. It is better to use setValues() and getValues() for large amounts of data.

Inspired by: https://docs.keydb.dev/docs/commands/#hmset

key

The key must be a string.

fields

Object with field names (keys) and values.

ttlMs (optional)

“Time to live” in milliseconds (for the database line, marked with key). After this time, the item becomes invalid and is deleted from the database the next time it is accessed or when the application is started. Set the value to 0 if you want to explicitly deactivate the process.

Example

import { BunSqliteKeyValue } from "bun-sqlite-key-value"

const store = new BunSqliteKeyValue()

store.hmSet("my-key", {
    "field-1": "value-1",
    "field-2": "value-2",
    "field-3": "value-3"
})

Hash (Map Object) - Read Multiple Values

hmGet(key: string, fields: fields?: string[])

Like hGet(), with the difference that several fields are read in one go.

Do not use the hash functions with several very large amounts (megabytes) of data or blobs. This is because the entire data record with all fields is always read and written. It is better to use setValues() and getValues() for large amounts of data.

Inspired by: https://docs.keydb.dev/docs/commands/#hmget

key

The key must be a string.

fields

Array with field names. If the parameter is not specified, all fields are returned.

Example

import { BunSqliteKeyValue } from "bun-sqlite-key-value"

const store = new BunSqliteKeyValue()

store.hmSet("my-key", {
    "field-1": "value-1",
    "field-2": "value-2"
})

store.hmGet(KEY_1, ["field-1", "field-100"]) // --> {
//   "field-1": "value-1",
//   "field-100": undefined,
// }

Hash (Map Object) - Has Field

hHasField(key: string, field: string)

Returns if field is an existing field in the hash stored at key.

Do not use the hash functions with several very large amounts (megabytes) of data or blobs. This is because the entire data record with all fields is always read and written. It is better to use setValues() and getValues() for large amounts of data.

Inspired by: https://docs.keydb.dev/docs/commands/#hexists

key

The key must be a string.

field

The field name must be a string.

Example

import { BunSqliteKeyValue } from "bun-sqlite-key-value"

const store = new BunSqliteKeyValue()

store.hSet("key-1", "field-1", "value-1")

store.hHasField("key-1", "field-1") // --> true
store.hHasField("key-1", "field-1") // --> undefined

Hash (Map Object) - Count Fields

hGetCount(key: string)

Returns the number of fields contained in the hash stored at key.

Do not use the hash functions with several very large amounts (megabytes) of data or blobs. This is because the entire data record with all fields is always read and written. It is better to use setValues() and getValues() for large amounts of data.

Inspired by: https://docs.keydb.dev/docs/commands/#hlen

key

The key must be a string.

Example

import { BunSqliteKeyValue } from "bun-sqlite-key-value"

const store = new BunSqliteKeyValue()

store.hGetCount("key-1") // --> undefined
store.hSet("key-1", "field-1", "value-1")
store.hGetCount("key-1") // --> 1

Hash (Map Object) - Get All Field Names

hGetFields(key: string)

Returns the field names contained in the hash stored at key. Use hmGet() to read field names and values.

Do not use the hash functions with several very large amounts (megabytes) of data or blobs. This is because the entire data record with all fields is always read and written. It is better to use setValues() and getValues() for large amounts of data.

Inspired by: https://docs.keydb.dev/docs/commands/#hkeys

key

The key must be a string.

Example

import { BunSqliteKeyValue } from "bun-sqlite-key-value"

const store = new BunSqliteKeyValue()

store.hmSet("key-1", {
    "field-1": "value-1",
    "field-2": "value-2"
})
store.hGetFields("key-1") // --> ["field-1", "field-2"]

Hash (Map Object) - Get All Values

hGetValues(key: string)

Returns the values contained in the hash stored at key. Use hmGet() to read field names and values.

Do not use the hash functions with several very large amounts (megabytes) of data or blobs. This is because the entire data record with all fields is always read and written. It is better to use setValues() and getValues() for large amounts of data.

Inspired by: https://docs.keydb.dev/docs/commands/#hvals

key

The key must be a string.

Example

import { BunSqliteKeyValue } from "bun-sqlite-key-value"

const store = new BunSqliteKeyValue()

store.hmSet("key-1", {
    "field-1": "value-1",
    "field-2": "value-2"
})
store.hGetValues("key-1") // --> ["value-1", "value-2"]

Hash (Map Object) - Delete Field

hDelete(key: string, field: string)

Deletes a field of the map object.

Do not use the hash functions with several very large amounts (megabytes) of data or blobs. This is because the entire data record with all fields is always read and written. It is better to use setValues() and getValues() for large amounts of data.

Inspired by: https://docs.keydb.dev/docs/commands/#hdel

key

The key must be a string.

field

The field name must be a string.

Multiple Databases

It is no problem at all to use several databases and access them at the same time.

Example

import { BunSqliteKeyValue } from "bun-sqlite-key-value"
import { join } from "node:path"

const dbDir = join(__dirname, "databases")
const settingsPath = join(dbDir, "settings.sqlite")
const languagesPath = join(dbDir, "languages.sqlite")

const settingsStore = new BunSqliteKeyValue(settingsPath)
const languagesStore = new BunSqliteKeyValue(languagesPath)

// Write settings
settingsStore.set("language", "de")
settingsStore.set("page-size", "A4")
settingsStore.set("screen-position", {top: 100, left: 100})

// Write languages
languagesStore.set("de", "German")
languagesStore.set("en", "English")
languagesStore.set("it", "Italian")

// Read all settings
const settingItems = settingsStore.getItems()
console.log(settingItems) // --> [
//   {key: "language", value: "de"},
//   {key: "page-size", value: "A4"},
//   {key: "screen-position", value: {top: 100, left: 100}},
// ]

// Read all languages
const languageValues = languagesStore.getValues()
console.log(languageValues) // --> [ "German", "English", "Italian" ]

// Read current language
const languageKey = settingsStore.get("language")
const currentLanguage = languagesStore.get(languageKey)
console.log(`Current language: "${currentLanguage}"`) // --> Current language: "German"

// Close DBs
settingsStore.close()
languagesStore.close()

Database Transactions

Transactions can be used to combine several database statements. These combined database statements are processed much faster than if they were executed individually. The more database statements are combined, the greater the speed advantage. You can find more infos in the Bun documentation.

Example

import { BunSqliteKeyValue } from "bun-sqlite-key-value"

const store = new BunSqliteKeyValue()

store.db.transaction(() => {
    store.set("key1", "100")
    store.set("key2", "200")
    store.set("key3", "300")
})()

store.db.transaction(() => {
    const value1 = store.get("key1")
    const value2 = store.get("key2")
    const value3 = store.get("key3")
    const total = value1 + value2 + value3
    store.set("total1", total)
})()

SQLite as base for a key value storage

SQLite provides a solid and well-tested foundation. SQLite reliably takes care of saving and reading data - both for short strings and for larger BLOBs. It provides a robust foundation on which to build. Even if SQLite is not fully utilized and no relations between tables are required, this is not a disadvantage.

Please give this GitHub project a ⭐ if this project is useful to you. Thank you very much! And if you speak German, here is my business homepage: GP-Softwaretechnik Maybe you will find something interesting for you there. 😃